Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Atmos Environ (1994) ; 266: 118750, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34584487

RESUMO

The coronavirus disease (COVID-19) spread rapidly worldwide in the first half of 2020. Stringent national lockdown policies imposed by China to prevent the spread of the virus reduced anthropogenic emissions and improved air quality. A weather research and forecasting model coupled with chemistry was applied to evaluate the impact of meteorology and emissions on air quality during the COVID-19 outbreak (from January 23 to February 29, 2020) in mid-eastern China. The results show that air pollution episodes still occurred on polluted days and accounted for 31.6%-60.5% of the total number of outbreak days in mid-eastern China from January 23 to February 29, 2020. However, anthropogenic emissions decreased significantly, indicating that anthropogenic emission reduction cannot completely offset the impact of unfavorable meteorological conditions on air quality. Favorable meteorological conditions in 2019 improved the overall air quality for a COVID-19 outbreak in 2019 instead of 2020. PM2.5 concentrations decreased by 4.2%-29.2% in Beijing, Tianjin, Shijiazhuang, and Taiyuan, and increased by 6.1%-11.5% in Jinan and Zhengzhou. PM2.5 concentrations increased by 10.9%-20.5% without the COVID-19 outbreak of 2020 in mid-eastern China, and the frequency of polluted days increased by 5.3%-18.4%. Source apportionment of PM2.5 during the COVID-19 outbreak showed that industry and residential emissions were the dominant PM2.5 contributors (32.7%-49.6% and 26.0%-44.5%, respectively) followed by agriculture (18.7%-24.0%), transportation (7.7%-15.5%), and power (4.1%-5.9%). In Beijing, industrial and residential contributions to PM2.5 concentrations were lower (32.7%) and higher (44.5%), respectively, than in other cities (38.7%-49.6% for industry and 26.0%-36.2% for residential). Therefore, enhancing regional cooperation and implementing a united air pollution control are effective emission mitigation measures for future air quality improvement, especially the development of new technologies for industrial and cooking fumes.

2.
J Environ Manage ; 287: 112296, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33711659

RESUMO

Air pollution attributed to substantial anthropogenic emissions and significant secondary formation processes have been reported frequently in China, especially in Beijing-Tianjin-Hebei (BTH) and Yangtze River Delta (YRD). In order to investigate the aerosol evolution processes before, in, and after the novel coronavirus (COVID-19) lockdown period of 2020, ambient monitoring data of six air pollutants were analyzed from Jan 1 to Apr 11 in both 2020 and 2019. Our results showed that the six ambient pollutants concentrations were much lower during the COVID-19 lockdown due to a great reduction of anthropogenic emissions. BTH suffered from air pollution more seriously in comparison of YRD, suggesting the differences in the industrial structures of these two regions. The significant difference between the normalized ratios of CO and NO2 during COVID-19 lockdown, along with the increasing PM2.5, indicated the oxidation of NO2 to form nitrate and the dominant contribution of secondary processes on PM2.5. In addition, the most health risk factor was PM2.5 and health-risked based air quality index (HAQI) values during the COVID-19 pandemic in YRD in 2020 were all lower than those in 2019. Our findings suggest that the reduction of anthropogenic emissions is essential to mitigate PM2.5 pollution, while O3 control may be more complicated.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Pequim , China , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Pandemias , Material Particulado/análise , SARS-CoV-2
3.
Chemosphere ; 251: 126350, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32151806

RESUMO

Brown carbon (BrC), a significant wavelength-dependent atmospheric absorber of solar radiation, plays a key role in photochemistry and long-lasting haze episodes. Herein, two types of BrC extracted from one-year PM2.5 samples (June 2017-May 2018 in Nanjing), i.e. methanol-extracted organic carbon (MSOC) and ultrapure water-extracted organic carbon (WSOC), were obtained to investigate distinct optical properties of atmospheric BrC. The extraction efficiency of BrC was as high as 91% in methanol solution, and the corresponding light absorption coefficient (Abs) of MSOC at 365 nm (Abs365-MSOC, 7.75 ± 3.95 Mm-1) was approximately 1.6 times that of WSOC (Abs365-WSOC, 4.84 ± 2.97 Mm-1), indicating that the water-insoluble compounds mostly affected the light absorption of BrC. The seasonal variations of Abs365-WSOC and Abs365-MSOC were followed the sequence of winter > spring > autumn > summer, due to the dominated emissions from fossil fuel combustion and biomass burning in the cooling seasons. Additionally, four fluorescent chromophores in WSOC and MSOC, containing three humic-like chromophores and one protein-like chromophore, exhibited the highest fluorescent intensities in winter but weakest in summer. The lower humification index (HIX) in MSOC reflects that humic-like chromophores were preferentially water-soluble, in coordination with high degree of photo-oxidation and aromaticity. Fluorescence index (FI) of BrC was also higher in winter because of the effects of photo-bleaching, whereas biological index (BIX) remained stable throughout a year. Considering the correlation between primary organic carbon (POC) and secondary organic carbon (SOC), aside from the contribution of primary emissions, secondary formation has become another major source to atmospheric BrC in Nanjing.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Aerossóis/análise , Biomassa , Carbono/análise , China , Corantes , Combustíveis Fósseis , Metanol , Material Particulado/análise , Estações do Ano , Água/química
4.
Huan Jing Ke Xue ; 40(6): 2546-2555, 2019 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854645

RESUMO

The hygroscopicity of aerosols has an important influence on atmospheric visibility and is one of the main causes of haze pollution. Based on observations of the aerosol hygroscopic growth factor (GF), water soluble inorganic ions, and organic carbon/elemental carbon (OC/EC) data during haze weather from April 17 to May 21, in 2014, the hygroscopic properties of aerosols and corresponding effects on haze in Nanjing were analyzed. The results showed that the distribution of GF was bimodal and varied from 1.12 to 1.64. With the increase of particle size, the average hygroscopic growth factor (GFmean) changed less and the standard deviation of wettability (σ) increased gradually; meanwhile, the degree of external mixing of chemical components increased gradually. The hygroscopicity of aerosol particles in the day was better than that at night, but the mixing degree was weaker than that at night; in non-haze weather, the hygroscopicity of aerosol particles was stronger and the degree of external mixing was higher, while the hygroscopicity and mixing degree of haze particles showed opposite trends. With the increase of haze levels, the hygroscopicity of aerosol particles grew weaker and the degree of external mixing decreased further. Relative humidity can have a significant impact on the chemical components of aerosols and their hygroscopic capacity. Under a low humidity background, the main chemical components of aerosols included NH4+, NO3-, SO42-, OC, and EC, and the content of OC/EC in aerosols during haze days was more abundant; in haze weather with low relative humidity, abundant organic matter was the main reason for the decrease of the moisture absorption capacity of small-scale aerosols. The level of relative humidity in the haze weather was also an important factor affecting the hygroscopic capacity of aerosols. The contents of (NH4)2SO4, OC, and insoluble substances in aerosols were the highest, followed by NH4NO3. The contents of these chemical components showed obvious diurnal variation characteristics, which resulted in significant diurnal variation of the hygroscopicity of the aerosols. κchem calculated by the chemical composition and κmean acquired by observations using H-TDMA showed good consistency, and the correlation coefficient was 0.8903. In haze weather, the correlation between them was further enhanced. Therefore, the major chemical components of aerosols could be used to predict the hygroscopic properties of aerosols.

5.
Huan Jing Ke Xue ; 40(10): 4725-4732, 2019 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-31854844

RESUMO

An eddy-covariance system combined with a semi-mechanistic model was used to analyze variations in gross primary productivity (GPP) and to simulate the impact of ozone (O3) on GPP under different levels O3 concentrations over a winter wheat field in Nanjing. The results showed that GPP was higher during the middle of the growth period and low during the early and late growth periods, reaching a maximum of 40 µmol·(m2·s)-1. Using high and low ozone sensitivity settings,O3-damage in 150, 100, 50 nL·L-1 and control treatment (CK) reduced GPP by -72%, -36%, -6%, and -10%, and by -13%, -6%, -1%, and -2%, respectively. These results provide a scientific basis for formulating defense strategies for O3 damage to crops.


Assuntos
Ozônio , Triticum , Produtos Agrícolas , Estações do Ano , Triticum/fisiologia
6.
Huan Jing Ke Xue ; 39(6): 2512-2520, 2018 Jun 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965605

RESUMO

PM2.5 is generally considered as a main pollutant causing the formation of haze. Based on meteorological parameters, aerosol distribution, and PM monitoring data in Taiyuan during November and December 2016, the characteristics of the key size spectrum of PM2.5 affecting haze were discussed. During the observation period, haze was frequent and serious. Heavy haze time accounts for 25.35% of the total haze time. Haze events occurred frequently when the relative humidity was greater than 80% and wind speed was less than 1.5 m·s-1, especially for severe haze. Mild and moderate level haze occurred frequently when the relative humidity was less than 80% and greater than 40% and when wind speed was less than 1.5 m·s-1. Slight haze mainly occurred when the relative humidity was 20%-40% and the wind speed was 1.25-2.55 m·s-1. The average mass concentration of PM2.5 was 209.45 µg·m-3, which was three times the level during non-haze events. With an increase in the haze level, the mass concentration of PM2.5 and the ratio of PM2.5/PM10 increased. PM1 was the key particle size affecting haze in the low humidity environment. PM0.5 was the key particle size that affects slight haze, mild haze, and moderate haze in the high humidity environment, while PM1 was the key particle size that affects heavy haze. The contribution of surface concentration to visibility decreased with high humidity, but the particle size increased by moisture absorption leading to an increase in the extinction efficiency factor, which compensated for the lack of surface concentration. The increase in the particle size parameter was an important factor for PM2.5 affecting the haze pollution with high humidity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...